Viewing posts categorised under: Construction

the horizon is relentless in markets fueled by high-end appetites

By Sean O’Keefe

Mai Olaussen loves her work. She is the Director of Development for Greystar, a global blue-chip leader in multifamily rental housing that focuses on developing and operating beautiful living environments tenants are happy to call home. After 10 years on the operations side of the business, Mai convinced Greystar’s leadership that she’d be a good fit for development. Five years later, she is leading multiple projects across the country just as the finishing touches are being put on the first project started when she took the helm.

“Parq on Speer is my golden child. The quality of the living experience will be exceptional,” says Olaussen confidently. Located on the east edge of Speer Boulevard just north of 8th Avenue, Parq on Speer will be a 16-story residential tower that seeks to set itself apart from an abundance of competition by targeting the upper end of the rental market. The luxury units will range from 546- to 3,478- square feet and are designed and finished to for-sale condominium standards. Quartz countertops, hardwood floors, rain showers, and soaking tubs are joined by KitchenAid/JennAir cooktops, and walk-in closets to making these apartments live lux. Units also feature Lutron smart home systems that provide integrated voice-activated control of temperature, audio/visual, security, and lighting.

To stand-out as luxury on the rental market, like the units, the amenities package must be next-level. The building will boast 24/7 lobby concierge services, a sky lounge and private dining area, an elevated dog park and grooming spa on level three, and a well-appointed fitness center. The anchor of the building and center of resident community gathering will be the resort-inspired sixth-floor outdoor pool lounge. A covered outdoor kitchen, a collection of cabanas and fire pit lounges and the pool deck combine to offer 14,275 square feet of entertainment space facing Rocky Mountain views to the west.

“The project team has been amazing, great teamwork and communication the whole way,” says Olaussen. “From the high-end design to the smooth execution through two years of construction so far, everything is coming together beautifully.”

Putting the project team together, Greystar selected Ziegler Cooper Architects of Houston and local General Contractor, Milender White, to execute the project through a Construction Manager/General Contractor (CM/GC) delivery model. Unifying the design and construction team during preconstruction services is a proven way to decrease construction complexities and increase speed to market without jeopardizing design intent or finished quality. While Greystar’s office proximity to Ziegler Cooper in Houston facilitated the design relationship, ironically it was Milder White’s proximity to the property through a competing product that started the relationship on the construction side.

“When Greystar bought this property, Milender White was building a similar multi-family high rise on the next block,” says Shane Fobes, Construction Executive and Senior Vice President of Milender White. “We were delighted to give them a tour and the relationship blossomed from there.”

Parq on Speer, like the project Fobes was working on, sits just a hundred yards or so from Cherry Creek, which cuts a swift path along downtown Denver’s southern edge. One of the earliest preconstruction conversations Milender White had on the project centered around the commonalities in purpose and proximity of the two properties and reaping the benefits of lessons learned on the previous job.

“This close to the creek there will be a lot of groundwater,” says Fobes. “Going below-grade with the parking would be typical in a building like this but dewatering this particular site made doing so cost prohibitive. Putting parking in a podium reshaped budgeting early and influenced design substantially.”

At roughly 800,00-SF, Parq on Speer will be nearly double the size of what many would consider a large, single-building multi-family development in Denver. With the parking going vertical through the center of the block-long development, Parq on Speer’s design emerged to position the sixth-floor roof-top amenity deck as the focal point of the 302-residence apartment community. Looking out on the Front Range from a perch above Speer Boulevard, the pool deck is circled by units in the ten stories of tower rising above on three sides.

“Greystar is developing the building around a lifestyle that hits the upper threshold of the market,” says Fobes. “One of the advantages of the CM/GC process is it gives us a deep understanding of the owner’s vision for the finished spaces and their expectations for quality. This sets us up to secure the right subs for the work.”

During a year of preconstruction services, working with Greystar and Zeigler Cooper, the team dissected challenges large and small, typical and uncommon. On the common side, Fobes points out that the cost and criticality of a building’s structure are impossible to ignore on any project. In the case of Parq on Speer, post-tensioned cast-in-place concrete floor plates allowed the design great flexibility and readily accommodated the building’s curvatures. The Milender White team scrutinized the design documentation and solicited the support of several local structural subcontractors in a design-assist process to help ensure the solution would meet local means and methods. At 60,000-SF, the concrete pour sequencing for each floor plate had to be balanced with available manpower. To facilitate the swarming workforce required to build at the anticipated speed, a pre-cast redi-stair system was incorporated into the design that allowed construction labor walkable-access to the level two deck while at-grade work progressed at full speed.

“The focus has been building condominium-quality homes at apartment-quality speed,” says Fobes. “A simple thing like adding two flights of pre-cast stairs eliminated hundreds of workers climbing up chutes and ladders every day to get to and from the main construction deck for six or seven months.”

Though the cast-in-place concrete structure is typical for high-rise multifamily construction, the cladding system chosen has been a bit more of an adventure. Using Aluminum Composite Panels, known as ACM, the high-performance exterior panels interlock to form a sleek metal shell of skin that must be precisely aligned.

“The building is immense, the reveals along the panels have less than a half inch of variability, which has to be consistent vertically for 193 feet,” shares Fobes of the complexity of the exterior. “At this square footage, we believe this is the largest residential project ever clad in ACM and the manufacturer required us to guarantee panel production sizes eight months out from delivery.”

As construction approaches the final stretch, the clatter of men, machinery, motion, and anticipation of something big seems feverish on the job site. Fobes and Olaussen are both eager for the finished product but continue to relish the process.

“We were in preconstruction for a year and we’ve got a thirty-month construction schedule,” says Fobes with a smile. “We build a lot of great relationships on a project like this, between ourselves, with our clients, the design team, and subcontractors. It takes a lot of committed people working together to build something like this and when it’s done, everyone will be very proud.”

About the Author
Sean O’Keefe is an architecture and construction writer who crafts stories and content based on 20 years of experience and a keen interest in the people who make projects happen. He can be reached at sean@sokpr.com.

Read more

a round table discussion on training today’s workforce for tomorrow’s challenges

By Sean O’Keefe

By necessity it seems that to be successful, today’s construction professional has to be a hands-on, multi-tasking, go-getter whose curiosity to improve performance is only surpassed by a commitment to doing things the right way. Educating a workforce across a diverse multitude of roles, both in the field and in the office, is an ever-changing challenge as new systems, new software, and new technologies continually come into play. In a round table conversation, Colorado Construction and Design sat down with a group of industry leaders to take the pulse of progress and shed some light on the future of Education Today’s Construction Professional.

Meet the Panel

Michael Gifford, President
Associated General Contractors of Colorado

As President of AGC Colorado, Michael Gifford is at the helm of Colorado’s leading professional association for the commercial construction industry. With 640 members composed of general contractors, specialty contractors, suppliers, and industry partners, Gifford has broad exposure to the pressures and opportunities that drive change in Colorado. Advocacy in public policy, economic- and workforce- development, and member participation and networking are all fundamental to the AGC’s mission.

“What gets me up in the morning is trying to move Colorado’s construction industry forward. Positive change takes time and commitment.”

Dave Davia, Executive Vice President, and CEO
Colorado Association of Mechanical and Plumbing Contractors

Proud to be a fifth-generation Colorado native, Dave Davia is the CEO of the Colorado Association of Mechanical and Plumbing Contractors (CAMPC). As the Colorado leadership of four distinct national trade organizations, CAMPC represents the interests of more than 200 members in the state legislature. Davia is particularly passionate about helping the industry prepare today’s workforce for tomorrow’s challenges. CAMPC hosts an average of 90 training days a year focused on career advancement and continues to build strategic partnerships with educators at every level.

“CAMPC doesn’t teach people how to do their job, we teach people how to advance in their careers.”

Carl Goodiel, Corporate VDC Manager
Hensel Phelps

Over more than 20 years in design and construction services, Carl Goodiel has been intimately involved in leading several firms through the transition from two-dimensional plans to the virtual construction realities being rendered in illuminating detail and depth today. As the Corporate Virtual Design and Construction Manager for Hensel Phelps, Goodiel sees a tremendous array of work being built across the country and around the globe. While technology is at the center of his services, people remain at the center of his work and corporate systems and process are only as effective as they are practical and applicable.

“A focus on technology has allowed me to operate in a lot of different realms within design and construction. A technology-trained workforce is essential to meeting tomorrow’s construction challenges.” 

Ian Roth, Director of Specialized Services

MG.aec

From his beginnings as a licensed architect to leadership roles in Building Information Management and workflow development for both designers and builders, Ian Roth has made a career at the intersection of technology and people. MG.aec is an Autodesk premier partner offering clients a 360-degree perspective on software integration across multiple platforms. As the Director of Specialized Services for MG.aec, Roth combines a robust understanding of design and construction management software with client workflow analysis to recommend integrated solutions that foster employee growth and productivity. With offices and training centers located in 12 states, MG.aec is connected to the design and construction industry across the U.S.

“MG.aec provides me with an opportunity to see what many different clients are doing with technology and training,” says Roth. “We observe the best practices of many to help our clients better leverage the technology they already have and fill in gaps where needed.”

What is the first thing that comes to mind on Educating Today’s Construction Professional?

“Educating today’s construction professional for me is about sharing practices across a large company, developing roles, and training both internally and externally,” says Carl Goodiel of Hensel Phelps. Employing a global workforce and efficiently organizing their efforts around structured roles requires a company-wide commitment to structured processes. Goodiel points to the four pillars of the Hensel Phelps Way – people, process, partnership, and technology – as essential to success. He believes that training the construction workforce of today is fundamentally about managing change. “We have to have consistency from job to job. We can’t constantly change technology or the way we do things. We have to make a commitment to processes and systems that work and look for ways to increase workflow efficiency within that system.”

Ian Roth, a construction technology specialist at MG.aec, agrees. He adds that documenting processes, seeing ways to improve and effectively incorporating lessons learned into training are the things that come to mind. Dave Davia, CEO of CAMPC works with 160 member firms from four national trade organizations (Mechanical Service Contractors of America, Plumbing Contractors Association of America, Mechanical Contractors Association of America, and National Certified Pipe Welding Bureau) and has broad experience with the hands that do the work.

“When we look at the impacts of the recession on construction in Colorado’s construction, we know a lot of middle-tier professionals left the industry and haven’t come back,” says Dave Davia, CEO of CAMPC. As knowledge, leadership, and hands-on know-how were forced to find new careers during the recession which began in late 2008, a slight, then unnoticed gap began to form in the workforce. Compounding matters, demographics across Colorado’s construction industry suggest that senior leadership will be retiring in the next ten years and the gap will continue to grow. To ready the industry, CAMPC has partnered with other trade associations to create the Specialty Contractors Institute (SCI). “This is modularized training, for contractors by contractors. We offer four different tracks designed to enhance the transfer of knowledge from the more experienced to the less experienced.”

What are the concerns in workforce development for you?

“I want to talk about productivity,” says Michael Gifford of AGC Colorado. “Somehow, in Colorado, we are doing a higher volume of construction with a flat number of employees.” With his finger on the pulse of the industry through AGC Colorado’s 640 member firms and their employees, Gifford applauds the improved performance of the workforce but struggles to sufficiently explain the stagnation in employment.

Indeed, in November 2018 the construction industry in Colorado employed 170,900 people according to the U.S. Department of Labor. This figure is relatively unchanged in the last five years though everyone in Colorado’s Construction industry acknowledges the long-standing labor shortage. Surveyed AGC Colorado members feel they are continually expected to do more work with the same workforce. Year after year, the lack of labor is reflected in project delays and higher costs.

“We’re doing more with less these days,” says Goodiel of his experience at Hensel Phelps. As an internal exercise, Goodiel took the time to compare two projects of similar size and scope. The first taken from the old school drafting days and the second engaging a modern BIM workflow. “The first job employed 17 design and production staff. The second was done by five and was delivered six months faster with more effective coordination in a more collaborative environment, fewer field changes, reduced risk, and improved quality.”

As a software solutions provider, training today’s workforce to use tomorrow’s technology is an important part of what MG.aec offers. Ian Roth’s role in the firm puts him in contact with the front lines of educating today’s professional and he shares that challenges are not limited to construction.

“In training and professional development, drastically reduced attention spans and the ability to stay on track and focused is causing a shift in training structures,” says Roth. Where 20 years ago, on the job training could entail three days of class time, today’s training must be broken down into compact segments. From modularized training courses to bites as small as 30-second videos to be reviewed immediately prior to tackling a task, shortening the learning curve and increasing retention remain central to educating today’s construction professional.

Where are we today on addressing these challenges?

“The Specialty Contractor Institute’s program is designed around smaller blocks of time and applicable learning,” says Davia. Along career-oriented training tracks – Project Management, Professional Service, Field Leaders, and Leadership – the SCI’s training program is segmented into three levels based on experience. The tools acquired in each module are designed to be immediately applicable to the participants’ daily responsibilities and reinforced through practice. “We archive each training session so there is a resource to review and also a training record that follows the person through their career.”

AGC Colorado continues to see an increased demand for professional leadership training from members and now offers several different single-day training and a two-day leadership academy. All 15 of the AGC Colorado’s committees have been reworked to include leadership-level professionals and committees are intended to act as training grounds for how to take ideas from initiative to fruition.

“At Hensel Phelps, training for each role has annual goals that must be met,” says Goodiel. “This includes specific classes, field training, and importantly, training the individual who replaces you to do the job just as well as you.”

Passing knowledge from one generation to the next isn’t a new idea but documenting workflows and establishing segmented training that corresponds sequentially to the work being done is an effective strategy for improving retention.

“I don’t think one size fits all in training, nor should it,” says Roth, whose firm routinely trains both design and construction professionals across the country on technology implementation and workflow management. Roth sees great value in creating just-in-time training modules tailored to the activities at hand and encourages clients to leverage today’s technology to the fullest. “Knowledge transfer through mentorship is huge. We have the capacity to capture that transfer in many ways and share it with new hires, people in other locations, and next generations.”

Prefabrication programs are also fertile ground for on-the-job training. The repetitive motion, assembly line process of fabricating specific building components in a controlled environment allows builders to implement watch, do, teach learning strategies. Free from the demands of a job site schedule where ancillary trades are impacted by a specialty contractor’s production, prefabrication workflows make an ideal situation for bite-size, one-on-one, hands-on training right down to the nuts and bolts when needed.

What is on the horizon?

“For the 175,000 construction professionals in Colorado what is on the horizon is more and better training,” says Gifford. “Like the current prevailing wage language in contracting, in two years the U.S. Department of Labor will have similar language around mandatory, in-person training requirements as a percentage of labor. This will be a big change for the entire industry.”

“Construction’s future is so bright,” says Davia. “Sadly, construction was once considered a fallback plan, if you couldn’t make it to college. Nothing could be further from the truth. This is a dynamic, intricate, workforce collaborating through leading-edge technology to build increasingly complex, globally connected architecture in Colorado and around the world.”

“The opportunities for educating and re-educating yourself on the job, are massive in construction,” says Goodiel. “From safety to development, VDC and BIM, LEAN construction workflows, the most successful people in our industry take advantage of a tremendous opportunity to learn new skills, apply it to their work, and then mentor others as part of their career approach.”

“Training programs need to be intentional, organized, and captured,” sys Roth. “It takes a little preplanning, but today construction professionals are leveraging technology and training to great effect in their careers and lives.”

“The industry is moving. We are integrating technology, prefabrication, and training into professional responsibilities and that makes construction more attractive as a career for the next generation or any generation,” says Gifford. “Everyone here is very proud of today’s construction professional and we are all excited to keep training them for tomorrow’s challenges.”

Read more

Looking ever toward the horizon, Shea Properties’ The Quincy typifies a development legacy

“We shape our buildings; thereafter they shape us.”
– Winston Churchill

Affable and understated, Peter Culshaw is a hands-on leader who understands why there is no “I” in team. As Executive Vice President of Shea Properties, he oversees more than two million square feet of commercial space along with roughly two thousand apartment homes in Colorado. While well-known sustained successes like the Denver Technological Center, Meridian Business Park, and Village Center have already cemented his status among the best to ever do it in Denver development lore, for Culshaw the horizon itself remains the thrill.

Shea Properties’ latest reveal, The Quincy located at 1776 Curtis Street, is a 28-story residential tower offering the best-in-class amenities expected of high-end, downtown living delivered in the premium quality of a build-and-hold, legacy asset. 359 luxury homes composed of studio, one- and two- bedroom units are expected to stand out for their generous proportions, extensive glazing, and the amenity plaza on level 8. A large community room, cyber café, and game room are joined by fitness facilities and an exposed rooftop lounge featuring multiple hot tubs, grilling areas, and fire pits. The property’s signature element will clearly be the pool, featuring a fully transparent exterior wall visibly perching swimmers eight-stories above Denver’s Central Business District along Curtis Street.

The amenity deck sits atop eight levels of parking, totaling 550 spaces, which is joined by ground floor retail to round out the mix of components. The Quincy represents Phase I of a two-phase site build-out. To complete the block, Phase II (now underway) will deliver Prism, an office cube in glass boasting a unique sculpturally cleaved prismatic exterior along 17th street. Combined, the two properties will offer a live, work, play lifestyle while also brilliantly illuminating Culshaw’s absolute conviction that conscientious people applying proven processes is ultimately what makes projects successful.

“The secret sauce is in getting it right,” says Culshaw when asked to consider how he measures success on The Quincy or any other development. Multi-family and office projects tend to be build and hold assets for Shea Properties, so building with high-quality materials and minimizing long-term operational costs are the basis for decision making rather than economizing development. “This opportunity is a ground-up high-rise, on a tight site in sensitive surroundings,” continues Culshaw thoughtfully. “Success in development is a team effort. We rely on in-house professionals, financial partners, and, of course, creative architects, smart contractors, and an awful lot of skilled craftsmen on the site to make it happen.”

While on-time, on-budget is a universal expectation among clients, few design and construction teams are ever tasked with delivering a single building over more than a decade from first draft pricing to ribbon cutting. Led by architects Davis Partnership, and, construction manager, GE Johnson Construction, the team working on The Quincy and Prism has been engaged continually since 2007. The site master plan, initial designs, and estimates were presented just before the 2008 recession compelled Shea to put the project on the shelf. Scott Miller, the Construction Manager at GE Johnson reflects back on what a long strange trip the project has been.

“We started the project in late 2007 during an economic peak, which shapes pricing. Then we entered big recession and market uncertainty,” says Miller. “Denver comes out of the downturn relatively quickly and enters a booming building market and suddenly there is a significant subcontractor and skilled labor shortage. Fortunately, our relationship and genuine friendship with Davis Partners is very strong. The collaboration between our firms allowed us to work through the details and manage challenges rather than problems.”

Miller notes that GE Johnson’s acutely detailed estimates accounted for as many exact quantities as possible, which increased Davis’ ability to keep the design on track. Managing many very small detailed changes rather than a few big ones were the focus of design-to-budget and market alignment when it was clear the project would finally break ground in 2015. To make the best use of a very limited site and maximize construction cost efficiencies, GE Johnson engaged a number of Lean construction strategies including pull planning and pre-fabrication.

“We’ve got a cast-in-place structure supporting a pre-cast exterior skin,” says Miller. The combination allows a lot of design flexibility for varying floor heights and minimizing column locations to create large internal spans and open units while also contributing to a cost-effective, buildable solution. Since GE Johnson self-performed the cast-in-place concrete they were able to control the critical path through the project using their own labor force and equipment, reducing the impact of subcontractor shortages on cost, schedule, and quality. For the pre-cast components, GE Johnson and Davis readily engaged key subcontractors in a design-assist capacity to ensure on-site efficiency in limited operational space. “We worked with the precast and glazing contractors to figure out ways to pre-assemble complete exterior wall panels on the ground before hoisting them up as ready-to-install sections. This saved time, money, and space to everyone’s benefit.”

Miller reports with pride that at 28-stories, The Quincy will be the tallest building completed in GE Johnson’s 51-year history. With the limited footprint and tightly controlled regulations related to vertical and overhead movements, early construction logistics centered on tower crane placement. The crane had to be able to pick materials up from two different ground locations and lift and swing them across the top of the site to the rising structure. Public safety and efficient egress for large truck access including setting up a site-internal throughway down 18th street were closely coordinated with the City of Denver.

“My job is to manage the healthy, necessary tension between the designer and the builder,” says Culshaw thoughtfully while acknowledging that despite the long road to fruition, The Quincy was relatively complication free in actualization. Shea Property’s original pro-forma was adjusted up to account for current market conditions when the project was ready to resume, but Davis’ design and GE Johnson’s estimates essentially moved in tandem with the recalculated budget. The Quincy adds a thoughtful, destination living environment for Denver’s downtown renter. When The Prism is complete in the fourth quarter of 2018, the completed vision will finally take its place in the Shea Property portfolio.

“Getting it right means conceiving a high-quality, market-appropriate asset, delivering it on-time and on budget and then stabilizing and refinancing it for the long-term,” finishes Culshaw. “However, it also means repositioning surface lot parking as a vibrant, new mixed-use microcosm of what makes Denver great. The credit here goes to a team of true professionals who stuck to it and made good on their commitments. That’s what success in development is always about.”

About the Author
Sean O’Keefe is an architecture and construction writer who crafts stories and content based on 20 years of experience and a keen interest in the people who make projects happen. He can be reached at sean@sokpr.com.

Read more

having a hand in the restoration of the Colorado State Capitol is more honor than obligation

Originally Published in Colorado Construction & Design

First opened for use in 1894, the Colorado State Capitol Building has stood sentinel over the legislative affairs of the people of Colorado for the last 125 years. Designed by architect, Elijah E. Myers, and constructed of Colorado white granite, the Capitol Building is intentionally reminiscent of the United States Capitol. Its distinctive, shimmering dome is covered in real gold leaf, which was added to the original structure in 1908 to celebrate the Colorado Gold Rush. On the interior, the building incorporates white Yule Marble and an abundance of Colorado Rose Onyx, an unusual rose marble. Taken from a quarry near Beulah, CO, the Rose Onyx is so rare, the stone used in the building represents the world’s entire known supply. From the precious, time-worn building materials to the intricate details of design and craftsmanship that went into construction, protecting The Colorado State Capitol’s historic integrity for generations to come is worth the investment.

Glimmering in gold, the dome is easy to spot.

Lance Shepherd is the Manager of the State’s Capitol Complex Architects, a team of dedicated professionals committed to overseeing the preservation, restoration, ongoing operations, and future rehabilitation of the Capitol and associated complex assets. He has been with the state for 20 years and the challenge of preserving the state’s most important piece of architecture is more of a thrill than a chore.

“It’s a dream job,” says Shepherd. “This is the most important building in the state. When it was built, construction started new industries in Colorado. Granite and marble mines opened, railroads pushed further out, and all of Colorado benefited from increased connectivity and commerce.”

Unfortunately, the building’s legacy hadn’t always been held in such high regard. When Shepherd started working for the State in 2000, the Capitol’s longevity had seemingly been taken for granted. A hundred years of service over a century of significant change with little investment in the building’s preservation led to a litany of critical building needs that would only continue to compound if left unchecked.

“Preservation was almost a dirty word in the 80s and 90s,” says Shepherd with a grin. “Back in 2000, a proposal to restore the Capitol in the hundreds of millions of dollars was turned down by the state legislature. That left us to fund rehabilitation projects independently in competition with other state agencies. Step-by-step, we’ve moved incrementally through many different phases to get where we are today.”

The first step was taken when multi-phase life safety upgrades were made to make the Capitol more compliant with modern code and ADA accessibility standards. A fire suppression system was installed and many of the building’s mechanical, electrical, security, and other systems were thoughtfully improved over seven years of work, led by GH Phipps Construction and Fentress. Just as the upgrades were reaching the final push, the building suffered a setback. After more than 100 years in Colorado’s punishing weather, water infiltration and decay had taken a toll on the Capitol’s dome. In 2006 fasteners holding a cast iron piece on the inside of the dome failed and the large piece fell onto the public observation deck, fortunately without incident. It was another four years before a funding mechanism was developed and the state could begin addressing the issue in 2010.

On the design side, the State selected a multi-faceted design team that included local and national experts. Led by Denver-based structural and civil engineering firm, Martin/Martin, architectural and historic preservation expertise from both Quinn Evans Architects and Humphries Poli Architects (now RATIO | Humphries Poli Architects) was united with Historical Arts & Casting, Inc. among others to assess the structure and develop achievable solutions. Two years of intense forensic analysis and preconstruction planning with GH Phipps took place before the team was ready to begin the restoration in earnest in 2012.

Iconic inside and out, the People’s House stands for all of Colorado, past, present, and future.

“The dome was a complex project. We repaired the damage, restored the tower, and re-gilded the gold dome without closing the building,” says Shepherd of the construction process that stretched into 2016. The gold leaf used to restore the dome was derived from the same Teller County, Colorado source that produced the gold used in 1908. The generous material donation from the AngloGold Ashanti’s Cripple Creek & Victor Mining Company was estimated at $125,000 including the cost to mine, refine, and transport approximately 65 ounces of .999-pure gold. The dome project itself stretched over four years, through multiple phases of funding, finally wrapping up in 2016. In the meantime, Shephard and the Capitol Complex Architects have had their hands full with several other restoration efforts running concurrently.

Noteworthy for being the nation’s first LEED Certified Capitol, in 2013, the building became the first state Capitol in the country to be cooled by geothermal power, when wells were installed. Three-phases of restoration on the House and Senate Chambers began in 2014. The building’s library, Senate and House committee rooms, and the old supreme court chambers have all been meticulously restored, contract-by-contract, area-by-area, meeting-by-meeting. Always working around, among, and in delicate consideration of ongoing governance. 

Today, the biggest scope of work consuming Shepherd’s team, their time, and the building is a comprehensive Window and Stone Restoration project. Being delivered through Design-Build contract with GH Phipps and RATIO | Humphries Poli Architects, the project involves a full restoration of the building’s exterior stone and each of more than 300 windows.

“It’s vital to understand the importance of the Capitol as a mile marker in our history,” says Melanie Short, an architect, and preservationist with RATIO | Humphries Poli Architects. Short is managing design services on the Window and Stone Restoration project and shares that she loves the hands-on necessity of her work. “Restoring the windows, the stone, and the whole building as close to original condition as possible is what preserves a sense of place for future generations. We can’t do it from behind a computer, we’ve got to get out there and get our hands on the parts and pieces of the building.”

In the case of the Capitol’s exterior, the parts and pieces are many. Consisting of four phases over five years, all the work is being completed between mid-May and the first week of January, while the legislature is out of session. Restoring the exterior means accounting for everything seen and unseen within the stone. A mortar analysis conducted on the original materials ensured replacement mortar matched in color, hardness, and texture. Iron interior fasteners embedded in the stones a 125 years ago in many cases have long since deteriorated; the rusted material migrating through the stone around it. Precise selection of appropriate cleaning agents involved a lot of trial an error, continually striving to do no harm while finding solutions that effectively address a consistent set of circumstances across all four faces of the building. Reoccurring issues in ancillary items include lead abatement in the joints between the granite blocks and asbestos abatement under pigeon deterrents installed on the building through the years of unconsidered use.

Care and craftsmanship combine to preserve one of the state’s most cherished assets. 

The Capitol’s window restoration program exemplifies the spirit of historic preservation in hoping to make-like-new what has already been in use for more than a century. Restoring the 300+ windows means removing each window along a face and shipping sets of roughly 40 at a time to a restoration shop in Kansas City. There the original wood is sanded, patched, repaired, and repainted to a dark blue color that was forensically matched to a hue of existing paint used previously. Some six to seven weeks later, the refurbished windows return and are and reinstalled in their original openings.

“This is a once in a lifetime opportunity, for sure,” says Blaine Dodgion, Manager of Special Projects for GH Phipps Construction. Dodgion has been actively involved at the Capitol for a significant portion of his 14 years of experience. As a guy who has lived the restoration in detail through estimates, CPM schedules, BIM models, subcontractor meetings, and the daily grind, he’s still somewhat in awe of the ionic structure. From the initial survey of existing conditions to the many hearts and minds that fight the battle for funding, to the coordination and execution of the work, everyone who touches it feels special energy from the building.

For all who work on it, the opportunity is special.

“GH Phipps is a proud Colorado builder of more than 67 years, so we have a personal investment in the state’s success. This is the people’s house and we are the people. More than any other, this building deserves the extra level of commitment and attention it inspires.”

About the Author:
Sean O’Keefe writes architecture and construction stories and content based on 20 years of experience and a keen interest in the people who make projects happen.

He can be reached at sean@sokpr.com    303.668.0717

Read more

Challenged to activate an undevelopable parcel, Goettsch Partners delivers

By Sean O’Keefe

The City of Chicago lives a legacy of architectural excellence derived from an insistence on pushing boundaries through experimentation and innovation. Long viewed as a design laboratory, Chicago’s unique architectural heritage owes much to the Great Chicago Fire of 1871, which left the decimated city ripe for redevelopment. Chicago has also had the fortune of being home to more than a few 20th Century architectural giants including American-icon Frank Lloyd Wright; father of skyscrapers, Louis Sullivan; and modernist pioneer, Mies van der Rohe.

Famous for what he called “skin and bones” architecture defined by a minimal framework of structural order to achieve open unobstructed space, van der Rohe established his Chicago practice in 1938. Today that practice lives on as Goettsch Partners, a firm more than willing to take on some of the world’s greatest design challenges. Among Chicago’s latest legacy assets, one of Goettsch Partners’ newest additions to the cityscape, 150 North Riverside, stands out as an immediately obvious example of the incredible made possible.

150 North Riverside is located along Chicago’s famous loop on a fantastic site where designing something buildable was considered next-to-impossible,” says Erik Harris, an Associate Principal with Goettsch Partners. Hemmed in by a combination of barriers including the City’s set-back zoning requirements along the Chicago River and a bustling, seven-line Amtrak right of way spanning more than 140-ft, the developable parcel offered only a small sliver land just 55-feet wide upon which to build. “Meeting the challenge of building a cost-effective high-rise on this site came down to delivering the required floorplate area with a 45-foot lease span supported by four-story trusses on either side of the 39-foot-wide core.

While the striking geometry of 150 North Riverside will always make the perched structure remarkable to the passerby, the site’s incredible landscape is an almost equally impressive engineering accomplishment that will likely go largely unnoticed.

“From the hard edge of the building, we were able to secure the Air Rights over the Amtrak right of way,” says Harris. “We decked over it to create two and a half acres of public greenspace that conceals the parking structure, lobby area, and loading dock enclosing about 28% of the site. Though the building is extremely vertical, the site is quite horizontal – both presented equations to solve.”

Filling the horizontal void and creating beneficial pedestrian connections to the urban fabric surrounding 150 North Riverside was a multi-disciplinary effort involving every aspect of civil, structural, and mechanical engineering integrated within the unique landscape. Craig Soncrant, a Principal with Wolff Landscape Architecture led the firm’s work on the project, relishing the challenge.

“Complicated green roofs and innovative plaza design is where we thrive,” says Soncrant, relaying that Wolff had some 21-such projects under construction in 2017 in Chicago alone. Soncrant himself led 15 separate high-rise landscapes last year and believes that providing effective green space for tenants is a must-have amenity in Chicago’s post-recession development. “150 North Riverside is a showstopper, an incredible building with a wonderful investment in city beautification that repositioned an inaccessible, eye-sore site as a convenient pedestrian thoroughfare, entry plaza, and river walk.”

The investment was certainly significant and stretching every dollar to improve pro forma is rarely a waste of time. Goettsch Partners originally planned to employ hollowed slab-on void construction to build-up the site topography, but when value engineering analysis revealed the complexities of that much site concrete was cost-prohibitive a new solution was sought. Wolff Landscape Architecture’s experience with an alternative, lightweight, structural-fill was extensive, and Soncrant proposed Geofoam as a very workable surface substrate substitute.  

“EPS Geofoam has been a go-to product in our designs for many years,” says Soncrant. “We use it whenever we need a light, strong, durable material to fill voids and make architecturally-contoured surfaces.” Bringing the design strategy to Goettsch Partners meant providing examples of previous Chicago-area, decked plazas successfully built with Geofoam and introducing the design team to ACH Foam Technologies.

“We only work with materials that we know will perform,” says Harris regarding the Geofoam value engineering proposition. “Performance, in this case, means supporting the pounding it will take from heavy pedestrian use in Chicago’s harsh weather; being easier, faster, and less expensive to work with; and, most importantly, feeling confident in the material’s capacity to meet loading requirements.” Wolff Landscape Architecture’s previous projects with ACH Foam Technologies have included a lightweight rooftop amenity deck on the eleventh floor of Chicago’s Prudential Plaza and at 222 South Riverside Plaza Renovation, also located over railroad tracks and along the Chicago River. Geofoam has also solved technical challenges beneath highways, bridge embankments, levees, and other large civil infrastructure applications where loading requirements are substantially greater than anything required by 150 North Riverside.

Developing a pedestrian-friendly site solution meant responding to elevations as low as the river and as high as the roof of the parking structure, a transition of some 15 vertical feet. Animating the long, horizontal site meant creating a multi-level green space connecting 150 North Riverside and the parking structure immediately to greater Chicago in many different directions.

“Building with Foam-Control Geofoam allowed us to create a two-tier park system that addresses vertical movement on site through a combination of ramps and stairs,” continues Soncrant. Since single blocks of Geofoam can be large enough to fill sections eight-feet long by four-feet deep, they make building multi-level terraces, ramps, stairwells, and planter boxes easy. As importantly, working with Geofoam enables designers to create a custom contour of substrate material in the exact depth need below specific panting areas. Since a tree may need a soil depth of several feet, a shrub some 18 inches, and grass just 6 inches, building a Geofoam base that accommodates appropriate soil depths decreases the overall dead load on the structure and supports controlled, positive drainage across the site.

The task of installing the overall landscape and the Foam-Control Geofoam blocks was won by Twin Oaks Landscaping, Inc. a Chicago-area firm with a national practice dating back to 1983. Steve Jungermann was the man responsible for overseeing the firm’s efforts.

“The project was a challenge simply because of where it’s located,” says Jungermann in relation to the complexity of the surrounding cityscape and the site’s abundance of elevation changes. “On something as complicated as this it’s imperative to get expert guidance.”

Jungermann details the challenges of developing material Take-offs that account for the quantities of Geofoam required to respond to the site’s many grade changes, soil depth-profiles, and architectural contours. Working with ACH Foam Technologies’ product representative Twin Oaks was able to develop an accurate purchase order and devise a finely-tuned delivery sequence for the material. With limited lay-down space and intense coordination required between site work, electrical, plumbing, and landscape construction, maintaining constant communication and just the right amount and types of Geofoam on hand was critical. Though large, the lightweight Geofoam blocks are easily maneuvered by two laborers and can even be customized to virtually any shape with a hand-held hot wire cutter.

“Though this building is both bold and dramatic, when it comes to material selection we are not looking to be risk takers,” finishes Harris. “Like the design for 150 North Riverside itself, Foam-Control Geofoam provided a confident approach to a unique engineering problem and contributed greatly to an overall wonderful building solution.”

About the Author
Sean O’Keefe is an architecture and construction writer who crafts stories and content based on 20 years of experience and a keen interest in the people who make projects happen. He can be reached at sean@sokpr.com.

Read more

Explore the iconic, new US Olympic Museum through the lens of architecture and construction writer Sean O’Keefe

By Sean O’Keefe

construction writer
Construction Manager GE Johnson Construction pushes the envelope to deliver the iconic U.S. Olympic Museum in Colorado Springs

Leaving a legacy often requires a lifelong fortitude of purpose and character that only the best among us can realize regardless of pursuit. In athletics, the pinnacle of success is that of an Olympic gold medalist, a champion among all of mankind. In construction and design, legacies may not be as easily quantified but once the truly spectacular is achieved it’s hard to overlook. When the new United States Olympic Museum in Colorado Springs, Colorado opens to the public, it will unmistakably add to the legacies of design architects Diller Scofidio + Renfro (DS+R) and General Contractor/Construction Manager GE Johnson Construction Company.

“The incredible architecture we are delivering is challenging all of us to think beyond boundaries,” says GE Johnson Superintendent, Tim Redfern, an industry veteran of more than 25 years. Redfern and GE Johnson Construction’s team are tasked with assembling a structure unlike any other ever built.

DS+R’s design for the US Olympic Museum takes its athletes as inspiration; the design idealizes athletic motion by organizing its programs – galleries, auditorium, and administrative spaces – twisting and stretching centrifugally around an atrium space. Arriving at ground level, visitors are whisked to the top of the building via elevator where they are greeted by a grand view of snow-capped Pikes Peak, an ode to Olympus with its own majestic presence. Circulation unfurls organically, gradually spiraling down through the museum’s series of loft galleries at a pace propelled only by the individual’s own inquisitive nature and gravity. The folded planes of the building’s superstructure create helical volumes of space circling the introspective atrium. Dissected by the structure and connected by a continual downward ramp, perched floor plains filled with interactive galleries will memorialize the accomplishments of U.S. Olympians past, present, and future.

architectural writer

“The dynamic building form defies typical construction. Thinking outside of the box is not an adequate description of what we’re doing to make this happen,” shares Redfern. The design’s diverse elevations  called for fifteen independent concrete slab-on-metal deck elevations, scaling just four stories of construction with no two planes running parallel for long. Structural tolerances are ultra-tight, becoming even less forgiving as the structure goes up – the opposite of most builds. The exterior frame tolerance is two inches, while interior frame tolerances are only a quarter of an inch, with just an eighth of an inch of deflection. Controlling precise placement of every piece of an exceptionally intricate puzzle like the United States Olympic Museum is a process that can only be accomplished through what GE Johnson thinks of as a spirit of continuous improvement.

“Normally, once you have things figured out, construction becomes routine,” says Project Manager, John McCorkle. “I don’t see that happening here. We’re continually questioning how we do things. The ingenuity of this structure demands constant collaboration with designers, builders, fabricators, and installers. Everyone will be learning all the way until the end.”

GE Johnson is pre-thinking and rethinking every move by incorporating a 3D point cloud that provides an accurate digital record of physically intangible space. All subcontractors are required to use the point cloud to develop approvable shop drawings. The point cloud is integrated with the BIM model, which draws from several computer-aided design, graphics, engineering, and manufacturing programs, along with the discipline-specific platforms of a variety of different subcontractors. Integrated work plans developed with subcontractors define every aspect of each construction activity including who, what, when, and where. Most importantly, plans will detail how each piece is assembled, verified, and validated for accuracy against the overall model as tasks complete. Looking beyond typical clash detection, GE Johnson’s fully detailed steel fabrication model allows the clearances of each structural framing member to be independently checked to make sure the design’s distinctive shell of diverging planes and scaled metal skin reads as intended.

“There will be a high-level of scrutiny on a building like this because of the iconic architecture,” says McCorkle of the pressure on GE Johnson to deliver the signature design.

US Olympic Museum Panel Detail

The museum’s unique exterior skin aptly illustrates the intricate precision of purpose and combination of expertise required to succeed at the Olympic level. The facade will be covered in more than 9,000 individual diamond-shaped anodized aluminum petals that interlock to form a single, beveled surface with integrated drainage channels. In total, an estimated 27,000 anchor points will attach the exterior wall sections to the structural frame. The specific details of every panel from backing materials, sheathing, and waterproofing will all be independently analyzed within the model because seemingly every petal is either uniquely shaped, placed, or attached.  GE Johnson brought highly specialized subcontractors who had previous experience with similar configurations onto the team to achieve the use of these unusual building materials and intricate assembly processes.

US Olympic Museum Exterior Mock-up

“Premium-quality construction is always a collaboration,” says McCorkle. “Delivering this design uncompromised means getting out of the comfort zone and seeking capabilities beyond our own.” Early in the problem-solving process GE Johnson worked with design architect DS+R, architect of record Anderson Mason Dale, and structural engineer KL&A on refining the micro-framing system that attaches exterior wall sections to the structure.  To address the complex sub-framing of the skin, through a design-assist collaboration, GE Johnson and the team decided to work with Radius Track, renowned for developing curved, cold-formed steel framing, to develop a buildable system. Through continual collaboration, the team was able to optimize wind-girt supports, which increased certainty and repeatability in installation while also decreasing costs overall.

Even as the structure reaches its highest elevation, preconstruction activities continue. For the specialized subcontractors developing a sequence of efficiently attaching the exterior skin to the structure, nothing is more valuable than the full-scale exterior wall section being erected on-site. McCorkle and Redfern estimate that the 20’ x 20’ mock-up wall section will require more than 1,000 labor hours to assemble and will likely cost in excess of $150,000 to build. Eight different subcontractors must delicately interlace their work through a maze of structural framing, light-gauge framing, waterproofing, drainage, glazing, and aluminum panels. Identifying components within wall sections that can be prefabricated off-site, like the micro-framing system and laser cutting framing plates, increases quality control and supports repeatable processes during construction. Each component is individually numbered indicating where, how, and to what it attaches like a giant model and each placement can be checked against the point cloud to verify accurate alignment.

Thinking outside of the box hasn’t been limited to solving challenges on the outside of the building. Placing the museum’s extremely large, yet whisper quiet, air handling unit has presented a series of sequencing challenges with a ripple effect that will likely continue to reverberate.

“It’s low-speed, high-volume and is by far the largest air handler I’ve ever put in,” says Redfern enthusiastically. “The size dictates a basement placement, which meant installing it before we put in the structural steel for level one.” Once installed, this unorthodox situation left the massive (and expensive) unit unprotected from the weather until the floor above it could be dried in. Complicating matters, structural engineering indicated that the concrete floor slabs across the building’s many elevations should be poured from the top down to deflect loading. Waiting until the museum’s 15 elevations were poured and cured would greatly extend the exposure period for the mechanical system, presenting significant risk, and an extremely difficult situation to rework if the unit was damaged. ‘’We encouraged the owner and design team to install terrazzo on the first level floors in lieu of stained concrete so that floor placement could be moved up in the schedule, increasing protection of the AHU and equipment below.”

Placing the air handling unit first also required fireproofing the basement before setting structural steel, one of several conditions, which make multiple mobilizations of key trades likely throughout construction.

“We have been empowered to use ingenuity to solve complex challenges at every turn on a very, very cool building,” finishes Redfern. “GE Johnson is using anything and everything we can to build this right. Pushing boundaries, gaining outside expertise, and asking more of oneself than others will is the Olympic spirit this museum is being built to honor.” 

About the Author:
Sean O’Keefe is an architecture and construction writer who crafts stories and content based on 20 years of experience and a keen interest in the people who make projects happen.

Read more

More Than A Garden

architecture writer
The Freyer-Newman Center for Science, Art, and Education at the corner of 11th and York will showcase the full depth and breadth of the Gardens’ collections, capacities, and outward ambition of changing the world.

Originally Published in Colorado Construction & Design
Fall 2018
By Sean O’Keefe

The vibrant spirit of Denver is in full bloom at Denver Botanic Gardens, a place where a palatable sense of rejuvenation is evident around every corner. From the Mordecai Children’s Garden climbing the hill to the York Street parking structure, through the Bonfils-Stanton Visitor Center and Gift Shop to Hive Bistro and the Science Pyramid’s scale-like skin, seemingly every angle of the property has been reinvigorated over the last decade. As members and regular garden visitors will attest, despite a steady drumbeat of change and near-constant construction since 2009, the process, though systematic, has felt organic and largely unobtrusive.

“Denver Botanic Gardens has thoughtfully invested $113 million on about 60 different projects in the last decade,” says Brian Vogt, CEO. As measured by visitation, the investment is paying off. Today the Gardens welcomes 1.3 million people a year, making it a close second to Longwood Gardens outside of Philadelphia for the most visited Garden in America.

Denver Botanic Gardens’ history, which Vogt shares succinctly, stretches back to 1940 and includes a stop in City Park before settling on what was then Denver’s oldest cemetery along the eastern edge of Cheeseman Park in 1959. Since then a campus of exceptional architecture has emerged. Based largely on mid-century modernist principles, the designs integrate built and natural spaces and promote open-span spatial proportions through post and beam structures.

Having previously served as president of the South Metro Chamber of Commerce for 14 years, Vogt was a key figure in the founding of the city of Centennial in 2000 and understands the importance of big-picture thinking. When he took the reins of Denver Botanic Gardens as CEO in 2006 he immediately set about applying his experience corralling people and resources to achieve a grand vision through common objectives.

“We undertook a strategic master plan; launched a massive capital campaign; added several new pieces of architecture; and revitalized the existing buildings in this amazing collection,” continues Vogt. Ranging from minor to major, visible to unseen, the improvements made on Vogt’s watch have all been folded into the Gardens experience with as little disruption to visitors or services as possible. “The Freyer-Newman Center for Science, Art, and Education will be the grand finale of a tremendous community commitment to the Gardens’ sustainability for the next 50 to 100 years.”

Anticipated as a public-facing gem enticing passersby from the corner of 11th and York, the new 50,000 square-foot building will be the only space in the Gardens’ portfolio that doesn’t require a ticket to enter. The two-story, prairie style influenced design posits the building as the backdrop for the Gardens landscape, giving the natural order the reverence it deserves. Stout tulip-tree structural columns straddle the entrance behind the landscaped entry plaza, which will greet visitors with a handsome handshake and calm confidence.

The building seems to defy a simple programmatic descriptor, its contents a collection of functions. It will house a combination of research, laboratory, office, educational, gallery, exhibit, and public gathering spaces all connected by a common core. It is designed to showcase the many varied activities of the science of botany and horticulture. Due to the sensitivity of laboratory and research components of the herbarium where plant samples are tested, studied, dried, and stored, ironically, it’s the only building on the campus that won’t have any living plants in it.

architecture writer
Davis Partnership’s design draws upon the abundant inspiration found in the Gardens’ mid-century modern architectural assets. The structural columns designed for the project reference the tulip-tree lights along the Conservatory’s promenade.  

“Programmatically, this project was like putting together a puzzle with all of the pieces upside down,” says Patrick Lee, the design team’s project manager and an associate with Davis Partnership Architects. Lee, who has been a Denver Botanic Garden member for more than 15 years, shares that he really didn’t understand all of the things the campus had to offer before starting the project because so much of it was hidden away. From the Gardens’ rare book library, classrooms, conference rooms, botanic illustration instruction and collections, galleries, and a 270-seat auditorium, the Davis team was tasked with packaging a multi-dimensional building program within a framework of intuitive navigation and high, public visibility.

“The circulation and adjacencies are organized around the large, central atrium, a day-lit space dappled in shadow created by wooden slats latticing the skylight overhead,” continues Lee. “The user experience and sequencing are bound together through transparency and biophilia.”

Like those outside, the tulip-tree structural columns within the atrium mimic the Gardens’ original tulip tree lights and, along with the 50’ x 90’ skylight, respond to the innate human tendency to seek connections with nature and other forms of life. In imparting this sense of spatial accessibility and the power of biodiversity, Davis was able to draw on abundant inspiration from the Gardens’ varied tapestry of landscapes, the Boettcher Memorial Tropical Conservatory, and many other campus assets.

The connections within the design extend beyond the building, figuratively and literally, with the new facility establishing an axial relationship through the Boettcher building and south on a direct line to the Waring House at 9th and York. The second floor incorporates a pedestrian walkway passage from the Boettcher building, which concludes with the ellipse gallery. The oval viewing room will pantomime the ellipse found in the Waring House courtyard at the southern terminus, which prominently displays a prized sculpture by world-renowned artist Dale Chihuly.

“The building is stitched into the site, integrated yet distinctly independent in public accessibility,” says Daniel. “We are continuing the Gardens’ legacy of referencing the campus’ wonderful preceding architectural accomplishments.”

Delivering the established design intent on the ultra-high-profile project within budget and on schedule is a task that fell with honor to GH Phipps Construction in a Construction Manager/ General Contractor role. GH Phipps delivered the original Boettcher Memorial Tropical Conservatory in 1966 and has been a mainstay in the Gardens’ construction over a long, sustained relationship.

“GH Phipps is extremely proud of our 50+ year history with Denver Botanic Gardens,” shared project manager, Adam Tormohlen. “I started my first project here in 2008 and have been engaged in one project after another ever since. I live in the neighborhood and walk here with my children. The opportunity to intertwine all of Gardens’ programmatic and architectural diversity into a single facility is incredible.”

architecture writer
The grand atrium gallery at the level one entrance offers more than a glimpse into the many facets of the Gardens’ programs, professionals, and the scientific pursuit of connecting people with plants.

Tormohlen and GH Phipps teamed closely with Denver Botanic Gardens and Davis Partnership through 18 months of preconstruction services. The team invested in three rounds of constructability and value-engineering reviews to give the owner what they wanted without sacrificing design intent. A key change occurred in the size of the skylight, which was originally designed to be approximately 30 feet longer. The reduced volume was strategically subsumed without diminishing the volume of light reaching the ground level from above by reducing coverage over second-floor overhangs.

As construction begins to go vertical, Tormohlen and the GH Phipps team are looking forward to many more exciting months of building. Exacting detail in site logistics and subcontractor sequencing are essential with limited laydown room and a steady stream of concerts, events, deliveries, and public passage taking place just steps from the site. Construction must also, of course, account for to sustained protection of every single tree on the site, each a cherished asset in the museum’s living collection.

“Denver Botanic Gardens is working in every county in the state of Colorado, and globally, connecting people with plants, especially those native to the Rocky Mountain region for the delight of all,” says Vogt with well-earned enthusiasm. “There are important messages about the natural order and the world that we need to convey to as many people as possible. This building will be the centerpiece of our core function of changing the world.”

About the Author:
Sean O’Keefe writes architecture and construction stories and content based on 20 years of experience and a keen interest in the people who make projects happen.

He can be reached at sean@sokpr.com    303.668.0717

 

Read more